THE UNIVERSITY OF SYDNEY

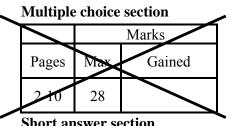
<u>CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)</u>

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2012

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME	N	NUMBER	
OTHER		TABLE	
NAMES	N	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, University-approved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Snort answer section				
	Marks			
Page	Max	Gaineo	1	Marker
11	8			
12	7			
13	5			
14	5			
15	5			
16	6			
17	6			
18	7			
19	6			
20	3			
21	4			
22	4			
23	6			
Total	72			

• What is the ground state electron configuration of oxygen?

Marks 8

The following diagram represents the relative energies of the atomic orbitals in the first three shells. Using arrows to represent electrons, show the most stable electron arrangement of the oxygen atom. Label the core electrons and the valence electrons.

	3d
y	3s —— $3p$ —— ——
Energy	2s —— $2p$ —— ——
	1 <i>s</i> ———

Briefly explain how your diagram illustrates the Pauli exclusion principle, Aufbau principle and Hund's rule.

Draw an oxygen molecule showing the shapes of the σ -orbital and the π -orbital present.

Oxygen and sulfur are both Group 16 elements with a valence of two. Oxygen is a diatomic molecule at room temperature, whilst the bonding in solid sulfur consists only of σ -bonds. Suggest reasons why, at room temperature, the O=O molecule is stable and the S=S molecule is not.

• Glycine, NH ₂ CH ₂ COOH, the simplest of all naturally occurring amino acids, has a melting point of 292 °C. The p K_a of the acid group is 2.35 and the p K_a associated with the amino group is 9.78. Draw a Lewis structure that indicates the charges on the molecule at the physiological pH of 7.4.	Marks 7
Use your structure to illustrate the concept of resonance.	
Describe the hybridisation of the two carbon atoms and the nitrogen atom in glycine and the molecular geometry of the atoms surrounding these three atoms.	
Glycine has an unusually high melting point for a small molecule. Suggest a reason for this.	
Do you expect glycine to be water soluble? Give a reason for your answer.	

The autoionisation of water conforms to the	the following balanced equation:
$2H_2O(1)$ \longrightarrow $H_3O^+(aq) + O$	$\Delta H = 56.3 \text{ kJ mol}^{-1}$
Is this an exothermic or endothermic reac	ction?
What will happen to the equilibrium if the	e temperature is raised?
The equilibrium constant, K , for this react	tion is 1.8×10^{-16} at 25 °C. Calculate ΔG .
	Answer:
Why is ΔG not equal to ΔH for this reacti	ion?
The pH of pure water is 6.81 at 37 °C. Is temperature? Explain.	water acidic, basic or neutral at this
	mater delate, oddie of fleddid de tillo

• The radioactive isotopes ¹³¹ I and ¹³⁷ Cs have been detected in drinking water near the Japanese Fukushima nuclear reactor. They have half lives of 8 days and 30 years, respectively. What is the definition of half-life?			
What percentage of both isotopes will stil	ll be detectable after 25 years?		
¹³¹ I:	¹³⁷ Cs:		
If you were exposed to equal concentration isotope would do more damage? Explain			

The concentration of a dissolved gas is related to its partial pressure by $c = kp$. What is the concentration of CO_2 dissolved in blood if the partial pressure of CO_2 in the lungs is 0.053 atm? The k for CO_2 is 0.034 mol L^{-1} atm ⁻¹ .	
	Answer:
Calculate the pH of blood if all of The K_a of H ₂ CO ₃ is 4.5×10^{-7} .	of this CO ₂ reacted to give H ₂ CO ₃ .
	Answer:
	erease in the partial pressure of CO ₂ in the lungs. The pH of the blood? Use a chemical equation to
	around 7.4 by the H ₂ CO ₃ / HCO ₃ ⁻ buffer system.

• A structural formula for Warfarin, an anticoagulant, showing all atoms and bonds is shown below. Draw a stick representation of the formula in the box provided.

Marks 1

• Give the constitutional formula(s) of the major organic products formed in each of the following reactions:

5

$$Br_2$$

• Complete the following table.

Marks 6

Starting material	Reagent / Conditions	Major organic products(s)
0		
СООН		COCI
CH ₃ CH ₂ COOCH ₂ CH ₃	2 M NaOH heat	
	H ₂ (g) Pd/C catalyst	
	NH ₂ CH ₃	O CH ₃ CH ₃ CH ₃ H +

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• (+)-Citronellal is a widely occurring natural product present in citronella oil, lemon and lemon grass. It is used as a soap perfume and in insect repellents.

Marks 4

Give the molecular formula of citronellal.

Identify the functional groups present in citronellal.

Draw the constitutional formula of the product(s) formed when citronellal is treated with each of the following reagents.

$$\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$$

excess CH₃OH / catalytic amount H₂SO₄

• NADH is the most important reducing agent in Nature. It is itself oxidised to NAD⁺. Complete the scheme below by:

(a) drawing in curly arrows to show the movement of electrons during the first step in

3

the reduction of acetone with NADH, and (b) drawing the structure of NAD⁺.

• Show clearly the reagents you would use to carry out the following chemical conversions. Note that more than one step is required and you should indicate all necessary steps and the constitutional formulas of any intermediate compounds.

Marks 6

•	Consider the tripeptide phenylalanylglutamyltyrosine (Phe-Glu-Tyr) (F), whose
	constitutional formula is shown below.

Marks 3

(F)
$$H_2N$$
 H_2N H_2N H_3N H_4N H_5N H_5

Draw the constitutional formula(s) of the product(s) obtained when the tripeptide (F) is subjected to the following conditions. Make sure you show the products in the appropriate ionic states.

cold 2 M NaOH	
5 M HCl / heat	

THIS QUESTION CONTINUES ON THE NEXT PAGE.

The p K_a values of tyrosine a p $K_{a3} = 10.07$ (-CH ₂ C ₆ H ₄ OH	are $pK_{a1} = 2.20$ (α -COOH), $pK_{a2} = 9.11$ (α -H). Draw the structure of the zwitterionic for	NH ₃ [⊕]) and mark 4
The naturally occurring isor zwitterionic structure of (L)	predominant species in aqueous solution? mer of phenylalanine is (L)-phenylalanine. phenylalanine and indicate the stereogenic whether this amino acid has the (R) or (S) contains	centre with

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Draw a tautomer of the structure of thymine, shown below.

Marks 1

thymine

tautomer of thymine

• Rank the following compounds in order of base strength and explain your reasoning. You may use diagrams to assist your explanation.

3

Marks

6

• Consider the following two monosaccharides, (A) and (B).

$$\begin{array}{c|c} CH_2OH \\ \hline OH & H \\ H & OH \\ \end{array} (\textbf{B})$$

 β -D-altropyranose

 α -D-xylofuranose

Draw Fischer projections of the open chain forms of (A) and (B).

I	(A)	(B)

Draw the major organic product of the reaction of D-altropyranose with the following reagents.

$[Ag(NH_3)_2]^{\bigoplus}/OH^{\bigcirc}$

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \,^{\circ}\text{C} = 22.4 \,^{\circ}\text{L}$

Density of water at 298 K = 0.997 g cm^{-3}

Conversion factors

1 atm = 760 mmHg = 101.3 kPa
1 Ci =
$$3.70 \times 10^{10}$$
 Bq
0 °C = 273 K
1 L = 10^{-3} m³
1 tonne = 10^{3} kg
1 Å = 10^{-10} m
1 eV = 1.602×10^{-19} J

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

	_	•
Multiple	Prefix	Symbol
10^3	kilo	k
10^{6}	mega	M
10^{9}	giga	G

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Standard Reduction Potentials, E°

Reaction	E° / $ m V$
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2^+}(aq) + 2e^- \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2^+}(aq) + 2e^- \rightarrow Cu(s)$	+0.34
$BiO^{+}(aq) + 2H^{+}(aq) + 3e^{-} \rightarrow Bi(s) + H_{2}O$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.74
$Zn^{2^+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-2.09
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	n nogg (at 25°C)
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pK_{w} = pK_{a} + pK_{b} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = Ae^{-Ea/RT}$
$\ln(N_0/N_{\rm t}) = \lambda t$	$ \ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt $
14 C age = 8033 ln(A_0/A_t) years	$\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ} S^{\circ} = R \ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$ \ln x = 2.303 \log x $
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$\frac{L}{4\pi\varepsilon_0 r}$ $\frac{1}{4\pi\varepsilon_0 r}$	Surface area of sphere = $4\pi r^2$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
H																	He
1.008		_															4.003
3	4											5	6	7	8	9	10
Lithium	BERYLLIUM											BORON B	CARBON	NITROGEN	OXYGEN	FLUORINE F	Neon Ne
6.941	Be 9.012											D 10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
1 1 SODIUM	1 ∠ MAGNESIUM											ALUMINIUM	SILICON	1 J PHOSPHORUS	1 O SULFUR	1 / CHLORINE	1 O ARGON
Na	Mg											Al	Si	P	\mathbf{S}	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K POTASSIUM	Calcium	SCANDIUM Sc	Titanium Ti	VANADIUM V	Cr	MANGANESE Mn	Fe	Co	NICKEL Ni	Cu	Znc Zn	Gallium	GERMANIUM	ARSENIC AS	SELENIUM Se	Bromine Br	KRYPTON Kr
39.10	40.08	44.96	47.88	▼ 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	Ga 69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	→ 1 NIOBIUM	→∠ MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	Barium Ba		HAFNIUM Hf	Tantalum Ta	TUNGSTEN	RHENIUM Re	OSMIUM	IRIDIUM	PLATINUM Pt	Au	Hg	THALLIUM T1	Pb	Bismuth Bi	POLONIUM Po	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87		89-103		105	106	107	108	109	110	111	112		1	ı			
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM	COPERNICIUM						
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
[223.0]	[226.0]		[261]	[262]	[263]	[264]	[265]	[268]	[281]	[272]	[285]						

LANTHANOID S

ACTINOIDS

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
ID	Lanthanum La	Cerium	PRASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	Samarium Sm	Europium Eu	GADOLINIUM	Tb	Dy Dy	Но Но	Erbium Er	Thulium Tm	YTTERBIUM Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
S	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]